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Abstract

DNA microarrays have been widely applied to cancer

transcriptome analysis; however, the majority of such

data are not easily accessible or comparable. Further-

more, several important analytic approaches have

been applied to microarray analysis; however, their

application is often limited. To overcome these limita-

tions, we have developed Oncomine, a bioinformatics

initiative aimed at collecting, standardizing, analyzing,

and delivering cancer transcriptome data to the bio-

medical research community. Our analysis has identi-

fied the genes, pathways, and networks deregulated

across 18,000 cancer gene expression microarrays,

spanning the majority of cancer types and subtypes.

Here, we provide an update on the initiative, describe the

database and analysis modules, and highlight several

notable observations. Results from this comprehensive

analysis are available at http:////www.oncomine.org.
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Introduction

In the last 5 years, hundreds of large-scale DNA microarray

experiments have been performed, generating global quan-

titative profiles of gene expression in cancer. Known types

and subtypes of cancer have been readily distinguished

by their gene expression patterns; more importantly, novel

molecular subtypes of cancer that are associated with a

myriad of tumor properties, including mechanism of trans-

formation, propensity to metastasize, and sensitivity or re-

sistance to particular therapies, have been discovered

(reviewed by Chung et al. [1]). Furthermore, numerous

candidate biomarkers and therapeutic targets have been

identified. Although such microarray studies have made

great strides in elucidating the molecular underpinnings

of cancer, in most cases, the invaluable data generated

from these studies sit stagnant and underused after publi-

cation. Microarray repositories, such as GEO and Array-

Express [2,3], and journal requirements to deposit microarray

data before publication have begun to ameliorate this prob-

lem; however, it remains difficult to ask targeted biologic ques-

tions of the collective transcriptome data set. For example, one

might wish to know in which molecular subtypes of leukemia a

tyrosine kinase of interest is most highly expressed, or, across

all relevant data sets, in which solid tumors relative to their re-

spective normal tissues the kinase most overexpressed. Other

high-level analytic queries might explore which transcription

factor binding sites are most prevalent in promoters of genes

overexpressed in a particular cancer, or which pathways or

interaction networks have disproportionate overexpression or

underexpression. One might also ask, ‘‘Of all cancer types

and subtypes, which has the profile most similar to that of a

cancer type of interest?’’—perhaps finding that BRAF mutant

thyroid cancer shares a strong similarity with Ras mutant

leukemia, reflecting their common transforming pathway. The

Oncomine initiative seeks to collect all published cancer micro-

array data and to perform standard analyses that allow re-

searchers to easily address such questions. To date, the effort

has amassed 18,000 cancer gene expression experiments,

and automated analysis has identified the genes, pathways,

regulatory networks, and functional networks activated and

repressed in human cancer.

Oncomine Overview

The first version of Oncomine was released in October 2003,

with 40 microarray data sets and nearly 100 differential expres-

sion analyses, allowing users to query differential expression

Address all correspondence to: Arul M. Chinnaiyan, MD, PhD, Department of Pathology,

University of Michigan Medical School, 5316 CCGC 0940, 1400 East Medical Center Drive,

Ann Arbor, MI 48109-0940. E-mail: arul@umich.edu
1This work was supported, in part, by the National Institutes of Health (U54 DA021519-01A1 to

A.M.C.), the Early Detection Research Network (UO1 CA111275-01 to A.M.C.), and the

Cancer Center Bioinformatics Core (support grant 5P30 CA46592 to A.M.C.). D.R.R. was

supported by the Cancer Biology Training Program and the Medical Scientist Training

Program. A.M.C. was supported by a Clinical Translational Research Award from the

Burroughs Welcome Foundation.

Received 8 January 2007; Revised 8 January 2007; Accepted 9 January 2007.

Copyright D 2007 Neoplasia Press, Inc. All rights reserved 1522-8002/07/$25.00

DOI 10.1593/neo.07112

Neoplasia . Vol. 9, No. 2, February 2007, pp. 166 – 180 166

www.neoplasia.com

RESEARCH ARTICLE



results for a gene of interest across collected data sets [4]. A

meta-analysis of the 40 data sets identified a ‘‘universal’’

cancer signature, representing genes significantly over-

expressed in nearly all cancer types relative to normal tissue

types from which they arose [5]. Similarly, meta-analysis

extracted an undifferentiated cancer signature, representing

genes commonly activated in poorly differentiated cancers

relative to their well-differentiated counterparts, suggesting

common transcriptional mechanisms of dedifferentiation.

Oncomine 2.0 was released in October 2004, increasing

the number of analyzed data sets to 65 and adding a co-

expression module. In addition, an improved user interface

was developed, and scalable vector graphics (SVG) were

adopted for visualizing gene expression data and analysis.

Later, Enrichment Analysis was added to Oncomine 2.0, in-

cluding an analysis of transcription factor binding sites and

their distribution among Oncomine cancer signatures, which

led to the identification of several hundred cancer-regulatory

programs [6]. The release of Oncomine 3.0, which occurred

in January 2006, marks significant additions in data and

functionality. Our semiautomated data pipeline has allowed

us to keep pace with the rapidly growing body of published

data, increasing the number of collected data sets to 264

and increasing the number of profiled cancer and normal

tissue samples to nearly 20,000. In addition, 1000+ gene

expression signatures have now been derived by group-

ing the samples based on carefully curated sample facts

ranging from cancer diagnosis, to transforming mechanism,

to patient survival. Additional analysis methods, including

Molecular Concepts Analysis, Interactome Analysis, and

Meta-Analysis, have been developed [7]. Another important

addition was the implementation of Cancer Outlier Profile

Analysis (COPA) for identifying genes with marked over-

expression in a subset of cases in a given data set. COPA

was used to nominate ERG and ETV1 as candidate onco-

genes in prostate cancer [8].

In addition to a growing database and new analysis

functionality, the Oncomine userbase has also continued to

grow. To date, Oncomine has registered 10,431 users. On

average, > 1000 distinct users log on per month, totaling

approximately 3200 unique sessions and > 100,000 hits per

month. A recent literature review identified 83 articles ref-

erencing the use of Oncomine. A compilation of these ref-

erences is available at http://www.oncomine.org from the

publications link under the About tab.

Oncomine Database and Data Pipeline

The Oncomine project consists of three general layers:

data input, data analysis, and data visualization, with the

Oncomine database playing a central role in storing micro-

array data, sample data, and analysis results (Figure 1). The

data input layer has two components: microarray data pipe-

line and annotation data warehouse. The microarray pipe-

line provides tools for our data collection team to identify,

prioritize, and collect microarray studies from published liter-

ature. The pipeline also draws relevant data sets directly

from the Stanford Microarray Database [9] and the NCBI

Gene Expression Omnibus [3] as they become available.

Importantly, our data collection team consists of pathologists,

molecular biologists, and bioinformatics scientists who care-

fully review cancer microarray studies, including only those

that meet our quality standards. To date, our data collection

team has incorporated 264 independent data sets, totaling

> 18,000 microarray experiments, which span 35 cancer

types (Table 1). A complete list of studies and their PubMed

citations is available in the Oncomine catalog.

The annotation warehouse represents our live compila-

tion of 14 external databases that we have deemed useful

for interpreting the role of individual genes in cancer and

for filtering cancer signatures (Table 2). A series of scripts

checks each of these databases for new data or modifica-

tions and automatically updates the warehouse. Both the

microarray pipeline and the components of the annotation

warehouse feed directly into the Oncomine database. The

database is implemented in Oracle 9i (Oracle, Redwood

Shores, CA) and comprises approximately 80 tables and

300 GB of disk space.

The data analysis layer consists of sample facts standard-

ization and automated statistical analysis. Because micro-

array data are only as valuable as the sample information

accompanying them, our data collection team places special

emphasis on sample facts curation and standardization. In

many cases, this permits us to test hypotheses not explored

in original analyses and publications (e.g., genes associated

with Ras mutation status in lung adenocarcinoma). When

possible, sample facts are translated to standard terms used

by the NCI Thesaurus [10], allowing us to provide definitions

for clinical terms. Automated statistical analysis components

monitor the database for new data and sample attributes,

automatically performing logical differential expression anal-

yses, cluster analyses, and gene set enrichment analyses

when needed. The details of analysis modules are discussed

in the following sections. Lastly, the Oncomine web layer

queries data from the Oncomine database and displays

tabular and graphical representations of data and analysis

results online. The web layer is implemented in Java/JSP

(Sun Microsystems, Santa Clara, CA) and uses dynamic

scalable vector graphics.

Differential Expression

Differential expression analysis forms the crux of the

Oncomine resource. Unlike other microarray repositories,

Oncomine automatically computes differential expression

profiles for cancer types and subtypes so that they can be

easily queried for a gene or pathology of interest. Furthermore,

precomputed differential expression profiles serve as input for

more advanced analytic functions such as Meta-Analysis,

Interactome Analysis, and Enrichment Analysis. We use

Student’s t test for two class differential expression analyses

(e.g., prostate cancer tissues versus normal prostate tis-

sues) and Pearson’s correlation for multiclass ordinal analy-

ses (e.g., Grade I, II, and III breast cancer). In two-class

analyses, we consider genes ‘‘overexpressed’’ if they are more

highly expressed in class 2 relative to class 1, whereas in

multiclass analyses, we consider genes overexpressed if they

display progressively increasing expression with increasing
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attribute values (e.g., Grade I < Grade II < Grade III). P values

are corrected for multiple hypothesis testing using the false

discovery rate method, as described by Storey and Tibshirani

[11]. To date, 1120 differential expression analyses have

been performed, of which 847 (76%) found statistically signifi-

cant differences in gene expression (Table 3). Each analysis

represents a logical grouping of samples based on standard-

ized sample facts followed by a t-test or correlation analysis of

each available gene. Types of analysis include ‘‘cancer versus

normal,’’ which compares cancer samples to normal samples

of the same tissue type; ‘‘cancer versus cancer,’’ which com-

pares distinct types and subtypes of cancer; ‘‘molecular alter-

ation,’’ which compares cancer samples of the same type

that differ in mutation status or karyotype; ‘‘prognosis,’’ which

Figure 1. Oncomine consists of three layers: data input, data analysis, and data visualization, with the Oncomine database playing a central role. The data input

layer has two components: the microarray data pipeline and the annotation data warehouse. The microarray pipeline is used internally to identify and prioritize

microarray studies in the literature. The pipeline also draws data directly from the Stanford Microarray Database and the NCBI Gene Expression Omnibus. The

annotation warehouse represents our live compilation of > 10 external databases that were deemed useful for interpreting a gene’s role in cancer. The Oncomine

database is an Oracle 9i relational database. The data analysis layer consists of sample facts standardization and automated statistical analysis. Sample facts

standardization uses the NCI Thesaurus and manual annotation. The automated statistical analysis component is implemented in Perl and R. A series of scripts

monitors the database for new data and sample parameters and automatically performs differential expression analysis, cluster analysis, and gene set analysis,

when needed. Oncomine web servers query data from the Oncomine database and display tabular and graphical representations of data and analysis results. The

web layer is implemented in Java/JSP and creates dynamic SVG.
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compares samples based on patient outcome; and ‘‘histologic

subtype,’’ ‘‘grade,’’ and ‘‘stage,’’ which compare samples

based on these pathological parameters. Analyses of the

‘‘Misc’’ type compare samples based on miscellaneous at-

tributes, including treatment response, viral infection status,

gene expression–based subgroups, and biomarker status

(e.g., estrogen receptor), among others. The analyses per-

formed in Oncomine usually encompass the original analy-

ses performed by the study authors, as well several novel

analyses deemed relevant by our data collection team. A de-

tailed description of the analyses performed can be viewed

by following the ‘‘Browse All Profiles’’ link.

To demonstrate the utility of the Oncomine database

and precomputed differential expression profiles, we queried

differential expression results for the three protein ki-

nases Abl, KIT, and PDGFRa, all of which are inhibited by

the tyrosine kinase inhibitor imatinib mesylate (Gleevec;

Novartis, East Hanover, NJ) (as reviewed in Wong and

Witte [12]) (Figure 2). Gleevec is indicated for chronic lym-

phocytic leukemia with BCR-ABL translocations [13] and for

gastrointestinal stromal tumors (GISTs) with activating KIT

mutations [14]. We anticipated that an Oncomine expression

analysis might identify cancer types and subtypes that over-

express Gleevec targets and, thus, might be susceptible to

inhibition, as is the case with FLT3 inhibition. Interestingly,

when considering all 113 molecular alteration profiles, ABL1

was found to be most significantly overexpressed in leu-

kemias with BCR-ABL translocations relative to leukemias

with other translocations, suggesting that activating trans-

location also leads to relative overexpression (Figure 2A).

Table 1. Data Collection Summary.

Tissue (n) Studies (n) Samples (n)

Adrenal 2 92

Bladder 2 135

Blood 1 60

Brain 18 950

Breast 38 3,198

Cell line 28 1,062

Cervix 1 33

Chondrosarcoma 1 36

Colon 8 422

Endocrine 1 43

Endometrium 5 176

Esophagus 2 71

Gastric 4 303

Head – neck 5 299

Leukemia 25 2,106

Liver 4 404

Lung 12 953

Lymphoma 16 1,929

Melanoma 8 300

Mesothelioma 3 169

Multicancer 8 1,607

Muscle 1 22

Myeloma 7 692

Neuroblastoma 1 112

Normal 4 320

Oral 1 27

Others 1 74

Ovarian 12 524

Pancreas 5 175

Parathyroid 1 61

Prostate 16 851

Rectum 1 46

Renal 9 731

Salivary gland 1 22

Sarcoma 8 591

Seminoma 1 107

Skin 1 18

Thyroid 1 16

Uterus 1 24

264 18,761

Data sets are grouped by tissue type. Studies that profiled several cancer

types are designated ‘‘Multicancer.’’ Studies that profiled only normal human

tissue samples are designated ‘‘Normal.’’ In general, Oncomine contains

primary tissue samples. 28 cancer cell line data sets are also included

(designated ‘‘Cell line’’).

‘‘Studies’’ refers to peer-reviewed publications that profiled z 10 human

cancer or normal samples and provided supplementary microarray data.

‘‘Samples’’ indicates the number of independent tissue samples, each pro-

filed on an individual microarray.

Table 2. External Resources Integrated into the Oncomine Data Warehouse.

Source Type

GenBank Nucleotide sequence

Entrez Gene Gene

Swissprot/Trembl Protein

Unigene EST cluster

InterPro Protein domains and families

Biocarta Pathway

KEGG Pathway

HPRD Protein –protein interactions

Cancer Gene Database* Literature-defined cancer genes

Gene Ontology Process, function, and

localization annotation

Inparanoid Orthologs

Pin database Nuclear protein complexes

Therapeutic Target Database Drug target

TRANSFAC/Match Putative transcription

factor – binding sites

The data warehouse provides annotation for Oncomine genes and reporters.

*The Cancer Gene Database is no longer available online.

Table 3. Differential Expression Analysis Summary.

Type n Significant [n (%)]

Cancer versus cancer 249 234 (93.9)

Molecular alteration 113 96 (85.0)

Normal versus normal 64 64 (100.0)

Cancer versus normal 66 60 (94.0)

Tumor stage 61 19 (31.1)

Histologic subtype 57 53 (93.0)

Tumor grade 56 30 (53.6)

Prognosis 39 18 (46.1)

Miscellaneous 415 273 (65.8)

1120 847 (75.6)

Differential expression analyses were performed on 264 data sets and were

of nine general types. The number of analyses performed is given, as is the

number and the percentage of those analyses that resulted in statistically

significant differential expression signatures. Cancer-versus-cancer analyses

compared one cancer type (e.g., small cell lung cancer) to one or more other

cancer types (e.g., lung adenocarcinoma and lung squamous cell carcinoma).

Molecular alteration analyses compared distinct molecular alterations

observed in a single cancer type (e.g., FLT3 mutation in acute lymphoblastic

leukemia). Normal-versus-normal analyses compared one normal tissue type

to other normal tissue types. Cancer-versus-normal analyses compared

tumors to the normal tissue of origin. Tumor stage, histologic subtype, and

tumor grade analyses compared tumors of a single type based on these

pathological parameters, and prognosis analyses compared tumors from

patients with favorable clinical outcomes to tumors from patients with poor

outcomes (e.g., recurrence, death, and so on).
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Similarly, KIT was found to be most highly expressed in GIST

relative to other soft-tissue sarcomas in two independent

data sets, suggesting that activating mutations in KIT,

which are known to occur in > 80% of GIST, are also asso-

ciated with overexpression (Figure 2B). Interestingly, KIT

was also found to be overexpressed in multiple myeloma

relative to normal B cells, and in seminoma relative to normal

testes. Finally, PDGFRa showed significant overexpression

in the subset of GIST with PDGFRa mutations relative to

those with KIT mutations (Figure 2C). Although PDGFRa
mutations are present in only a small minority of GIST, it

is notable that, again, activating mutations are associated

with overexpression. PDGFRa also showed marked over-

expression in tumor samples relative to cultured cell lines of

the same type, highlighting the importance of PDGFRa

in vivo, consistent with the protein’s documented role in

angiogenesis [15]. Lastly, PDGFRa showed overexpression

in sarcomas relative to melanomas, specifically in synovial

sarcomas (Figure 2D).

The preceding analyses began with genes of interest

and examined their differential expression profiles across

the database of 18,000 microarray experiments. Similar

Figure 2. Selected expression profiles of Gleevec targets: ABL1, KIT, and PDGFRa. (A) Among 71 molecular alteration analyses, ABL1 was most significantly

overexpressed in leukemias with BCR-ABL translocations relative to leukemias with other translocations. (B) Among 67 cancer-type analyses, KIT was most

significantly overexpressed in GISTs relative to other soft-tissue tumors. KIT was also found to be significantly overexpressed in multiple myeloma (MM) relative to

normal B cells, and in seminoma relative to normal testes. (C) PDGFRa was significantly overexpressed in PDGFRa mutant GISTs relative to KIT mutant GISTs,

suggesting that activating mutations are associated with overexpression. In two independent data sets, PDGFRa is overexpressed in primary tumors relative to

cultured tumor cells, highlighting the importance of PDGFRa in tumor–host interactions. Finally, PDGFRa shows overexpression in soft-tissue sarcomas relative to

melanomas. (D) Across a panel of sarcomas, PDGFRa shows overexpression in a fraction of the GISTs and in all synovial sarcomas, but not in clear cell sarcoma,

liposarcoma, or leiomyosarcoma. Moderate expression was observed in fibrosarcomas and malignant fibrous histiocytoma (MFH). The number of samples is

provided in parenthesis, and data sets are named by author and tissue. The y-axis units are based on z-score normalization.
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analyses can be performed online for nearly every named

gene and thousands of expressed sequence tags (ESTs).

Oncomine data can also be explored through the profile mod-

ule, in which a cancer type or subtype of interest is analyzed.

Gene lists and heatmaps can be generated for each of

the > 500 cancer profiles, rank-ordering genes based on

their differential expression. In addition, external filters

can be applied to rank-ordered gene expression profiles.

For example, one might wish to examine overexpressed re-

ceptor tyrosine kinases in pancreatic adenocarcinoma or

underexpressed tumor-suppressor genes in small cell lung

cancer. Filters based on Gene Ontology annotations [16],

InterPro protein domains and families [17], Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [18] and Biocarta

pathways, chromosome localization, and transcription factor–

binding sites are available [19].

To illustrate the utility of the profile module, we examined

the differential expression of known therapeutic targets

in metastatic prostate cancer (Figure 3). The known thera-

peutic target filter includes 347 genes encoding proteins that

Figure 3. Therapeutics targets overexpressed in prostate cancer progression. (A) Twenty of 337 genes that encode known therapeutic targets that are mostly

overexpressed in the progression from benign prostate (BPH = benign prostatic hyperplasia; NAP = normal adjacent prostate) to localized prostate cancer (PCa) to

metastatic prostate cancer. (B) PRKCZ, the most overexpressed drug target in metastatic prostate cancer, has also been significantly overexpressed in prostate

cancer in two independent data sets PRKCZ is targeted by bisindolylmaleimide I, and its inhibition has been shown to arrest growth in glioblastoma cells [20]. (C)

SHMT2 is another drug target that is overexpressed in prostate cancer progression. The expression pattern is validated by an analogous data set SHMT2 is a

mitochondrial serine hydroxymethyltransferase that is specifically inhibited by the plant amino acid mimosine [21].
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have literature-defined inhibitors, antagonists, or blockers,

according to the Therapeutic Target Database. We exam-

ined the metastatic prostate cancer profile because this ad-

vanced disease is invariably lethal. As depicted in Figure 3A,

several of the 347 known therapeutic targets have in-

creasing expression, with progression from benign prostate

tissue to localized prostate carcinoma to metastatic prostate

cancer. PRKCZ, the ~ isoform of protein kinase C, was found

to be the most significantly overexpressed target in prostate

cancer progression (Figure 3B). This overexpression in pros-

tate cancer was validated by two independent profiles: the

Su et al. profile, which compared prostate cancer to other

cancer types, and the Luo et al. profile, which compared

prostate cancer to normal prostate tissue. PRKCZ is targeted

by bisindolylmaleimide I, and its inhibition has been shown

to arrest growth in glioblastoma cells [20]. Perhaps a simi-

lar effect would be observed in metastatic prostate cancer

given the gene’s strong overexpression profile. Another

target, serine hydroxymethyltransferase 2 (SHMT2), also

showed significantly increased expression in metastatic

prostate cancer, both in the Dhanasekaran and Lapointe

data sets (Figure 3C). In fact, of all Oncomine profiles con-

sidered, SHMT2 had the most significant overexpression in

these two prostate cancer progression profiles. SHMT2 is a

mitochondrial serine hydroxymethyltransferase that is spe-

cifically inhibited by the plant amino acid mimosine [21].

These results suggest that mimosine or derivative com-

pounds should be investigated as prostate cancer therapeu-

tics. In summary, gene and profile modules can be used to

examine differential expression results in the context of a

gene or pathology of interest.

Coexpression

Coexpression analysis seeks to identify sets of genes with

synchronous expression patterns across a panel of tissue

samples. Several studies have demonstrated that coexpres-

sion often suggests shared function; thus, when considering

a target or marker of interest, it is helpful to study genes

with shared expression patterns. We apply average linkage

hierarchical clustering to identify sets of coexpressed genes

in each Oncomine data set. To prioritize cluster results for a

gene of interest, clusters from independent studies are

sorted based on their size and intracorrelation. In some data

sets, a gene of interest may show little variation and may

have no coexpressed genes, whereas in other data sets,

the gene of interest may be part of a robust cluster of co-

expressed genes. For example, we queried coexpression

results for ERBB2 (Her2/neu), a receptor tyrosine kinase

amplified in breast cancer, and found that it was part of

a strong cluster of 14 genes (R = 0.56) across a panel of

295 breast carcinoma samples (Figure 4A). Interestingly,

when examining the coexpressed genes, we found that all

of them are located on chromosome 17q, adjacent to ERBB2.

This is consistent with previous reports stating that genes

from the ERBB2 amplicon are coamplified and coexpressed

in breast cancer [22]. Interestingly, GRB7, which is located

immediately adjacent to ERBB2, showed remarkably strong

coexpression with ERBB2 (R = 0.92) (Figure 4B), suggest-

ing that DNA copy number strongly influences the expression

levels of these two genes.

Meta-Analysis

One advantage to compiling large numbers of microarray

studies in a single database is that the results of different

studies can be compared directly. For example, one problem

with microarray studies is that false-positive results are

common [5]. Another is that microarray studies often gen-

erate gene signatures consisting of hundreds of genes,

making it difficult to distinguish which genetic features are

critical. In these types of situations, it would be useful to

compare the results of different studies, to determine which

results are most robust and most consistent across a range

of studies. Comparative meta-profiling is a method designed

to permit the comparison of different studies present in the

Oncomine database. There are many problems associated

with comparing actual gene measurements across dispa-

rate microarray data sets; comparative meta-profiling was

designed to avoid these problems by instead comparing

differential expression measured in each data set [5]. With

Oncomine, users first select appropriate studies for com-

parison, and then use meta-analysis to identify the genes

that are significantly overexpressed or underexpressed

across multiple independent studies. A ‘‘leave-one-out’’

strategy is incorporated to compensate for arrays in which

a particular gene is not represented or is not well measured.

Meta-analysis will become increasingly useful as the num-

ber of published transcriptome studies continues to grow

and as these studies are added to the Oncomine database.

COPA

COPA, the most recent addition to the Oncomine analysis

pipeline, searches for gene expression profiles that display

the most profound overexpression in a subset of tumors [8].

This methodology was motivated by the heterogeneity of

cancer and the fact that oncogenes are often activated in

only a subset of cases. As described previously, COPA cor-

rectly prioritized several known oncogenes in their respective

tumor types, including ERBB2 in breast cancer, CCND1 and

FGFR3 in multiple myeloma, and PBX1 in leukemia, among

others. Also of note, COPA nominated ERG and ETV1 as

having profound outlier expression in subsets of prostate

tumors, which was validated experimentally and shown to

be the result of gene fusion events with the androgen-

regulated gene TMPRSS2 [8]. Results from COPA are avail-

able from both gene and profile modules. Within the gene

module, an outlier tab reports an ordered list of data sets

in which the query gene had the highest ranking COPA

score. The summary page also depicts COPA results in the

last column, allowing one to quickly identify cancer types in

which query genes frequently show marked outlier expres-

sion. For example, a gene search for ERBB2 shows that 11

independent breast cancer data sets rank ERBB2 in the top

50 scoring outliers, whereas no prostate cancer data set

ranks ERBB2 in the top 50. Conversely, a gene search for

ERG identifies nine independent prostate cancer data sets

ranking ERG in the top 50 outliers, whereas no breast cancer
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data set ranks ERG in the top 50. Figure 5 depicts outlier

profiles of ERBB2 and ERG in breast and prostate cancer

data sets, respectively. Outlier results are also available

through the profile module under advanced analysis, allowing

one to identify top-scoring outliers in a given data set. As

described for differential expression analysis, standard filters

for identifying top-scoring outliers within a selected subset of

genes are also available.

Work Flow

Analyses in Oncomine can be initiated from one of four

possible starting points: Gene Search, Profile Search,

Browse Profiles, or Browse Catalog. Gene Search is used

to explore Oncomine with a gene of interest. A search on

any gene returns a Differential Activity Map, a visual sum-

mary of all the tissues and comparison types in which

that gene is differentially expressed, at a level of statistical

Figure 4. ERBB2 cluster in invasive breast carcinoma. (A) ERBB2 is coexpressed (R = 0.56) with 14 genes across a panel of 295 breast carcinoma samples

(101 cases that went on to metastasize are shown). All 14 genes are located near ERBB2 on chromosome 17q, suggesting that coexpression can be attributed

to known amplification of this region in breast carcinoma. (B) GRB7 is immediately adjacent to ERBB2 and displays a nearly identical expression pattern (R = 0.91)

across the breast carcinoma samples, indicating that GRB7 is coexpressed and likely coamplified with ERBB2 in all cases.
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significance that is determined by the user. Users then focus

on a specific tissue and comparison type (e.g., prostate;

cancer vs normal), or a particular analysis type (Differen-

tial Expression, Co-expression, or Outlier Analysis). Profile

Search is built on differential expression analyses performed

on individual studies, which generate lists of genes (‘‘gene

signatures’’) that are differentially expressed between two

related tissue or cell types. In Profile Search, users can

access the gene signatures of particular cancer, treatment,

histology, or pathology parameters. Once identified, those

profiles can be analyzed across studies using meta-analysis.

Alternatively, the results of any given study can be explored

using a variety of tools, including Differential Expression,

Filter, Enrichment, Interactome, Pathway, and Outlier Anal-

ysis. Browse Profiles permits users to initiate a search of all

profile analyses present in Oncomine without applying any

initial filters. Browse Catalogs returns all studies in the

Oncomine catalog. Filtering is available to limit searches to

specific tissues or by analysis status.

Methods

Data Collection, Processing, and Storage

Microarray data sets were downloaded from author web

sites, provided by the authors on request, or downloaded from

the Stanford Microarray Database [9] or the Gene Expression

Omnibus [3]. A list of collected data sets is available from

the Oncomine catalog. Data were of two general types (two-

channel ratio data and single-channel intensity data) and were

usually provided in a single composite file format. All available

data were included in processing and analysis, except for

negative single-channel intensity values. All data sets were

log-transformed and median-centered per array, and stan-

dard deviations were normalized to one per array. Studies

were named by the following convention: FirstAuthor_

TissueTypeProfiled (e.g., Dhanasekaran_Prostate). Sample

attributes were standardized and linked to NCI Thesaurus

terms [10] by our data collection team. Data and analysis re-

sults were stored in an Oracle 9i relational database.

Figure 5. COPA indicates that ERBB2 and ERG exhibit outlier expression in multiple breast and prostate cancer microarray data sets, respectively. (A) ERBB2

expression profile in the Perou et al. [31] cDNA microarray data set. (B) ERBB2 expression profile in the van de Vijver et al. [32] oligonucleotide data set,

segregated by estrogen receptor (ER) status. (C) ERG expression profile in a cDNA microarray data set. (D) ERG expression profile in an oligonucleotide data set,

segregated by Gleason score.

174 Oncomine: A Bioinformatics Initiative for Cancer Transcriptome Analysis Rhodes et al.

Neoplasia . Vol. 9, No. 2, 2007



Differential Expression Analysis

For each of the collected data sets, samples were

reviewed and grouped into logical sample sets. To date,

264 data sets have been reviewed, with at least four samples

corresponding to both classes of one analysis of interest

and further analyzed. Analyses of interest included: cancer

tissue versus respective normal tissue; high-grade (un-

differentiated) cancer versus low-grade (differentiated)

cancer; poor-outcome (metastases, recurrence, or cancer-

specific death) cancer versus good-outcome (long-term or

recurrence-free survival) cancer; metastasis versus primary

cancer; and various molecular subtypes, biomarker status,

treatment responses, and other miscellaneous comparisons.

After the definition of logical analyses, each gene was

assessed for differential expression with Student’s t test, in

the case of two-class analyses, and with Pearson’s correla-

tion, in the case of multiclass ordinal analyses. Both tests

were performed using the R statistical computing package

(http://www.r-project.org). Tests were conducted both as

two-sided, for differential expression analysis, and as one-

sided, for overexpression analysis. To account for multiple

hypothesis testing, Q values (estimated false discovery

rates) were calculated as follows: Q = NP / R, where P is

P value, N is the total number of genes analyzed, and R is

the sorted rank of P value.

Coexpression Analysis

Each data set was filtered to contain only the top 50% most

variable genes, as defined by standard deviation. Next, aver-

age linkage hierarchical clustering was performed on each

data set using AlgorithmDCluster for Perl (http://bonsai.ims.

utokyo. ac.jp/~mdehoon/software/cluster/software.htm). The

Oncomine application sorts coexpression results by node

correlation for all nodes having at least 10 distinct genes. This

allows users to focus on data sets in which a gene of interest

displays a strong coexpression with other genes.

COPA

COPA has three simple steps. First, gene expression

values are median-centered, setting each gene’s median ex-

pression value to zero. Second, median absolute deviation

(MAD) is calculated and scaled to 1 by dividing each gene

expression value by its MAD. Of note, median and MAD were

used for transformation, as opposed to mean and standard

deviation, so that outlier expression values do not unduly in-

fluence distribution estimates and are, thus, preserved post-

normalization. Third, the 75th, 90th, and 95th percentiles of

transformed expression values are tabulated for each gene,

and then genes are rank-ordered by their percentile scores,

providing a prioritized list of outlier profiles.

Molecular Concept Data Collection and Analysis

Sets of biologically related genes were collected or de-

rived from 503 microarray studies and 12 external data-

bases. All identifiers were mapped to Entrez Gene IDs for

analysis. For each molecular concept, a null set was defined

as the set of all genes measured or considered in defining the

concept. For example, null sets for microarray-based con-

cepts were defined as all genes measured on a microarray

platform, whereas null sets for Gene Ontology–based con-

cepts were defined as all genes with at least one Gene

Ontology annotation.

Cancer signatures were derived from differential expres-

sion analyses that compared two logical groupings of normal

or malignant human tissues or cell lines as defined by

the Oncomine Cancer Microarray Database (http://www.

oncomine.org) [5]. In total, data from f 18,000 microarrays

from 270 independent studies were used in this analysis.

From Oncomine, we downloaded gene lists rank-ordered by

P values by Student’s t test from 1192 differential expres-

sion analyses. We defined gene signatures as the top 1%,

5%, and 10% of overexpressed or underexpressed genes

from each analysis. We selected multiple cutoffs to allow for

variability in the optimal association cutoff. Only the most

significant of the three cutoffs is reported. Drug overexpres-

sion and underexpression signatures were derived from the

Connectivity Map data set [28]. The data set was normalized

as described [5], except that normalized expression values

of < � 0.5 were set to � 0.5. Each compound treatment

experiment was compared to the appropriate control ex-

periment(s) based on the assigned batch number. When

multiple replicates were available, expression values were

averaged. Genes that did not have a normalized expression

value of > 0.0 in either treatment or control experiments

were further filtered. Genes were then rank-ordered by over-

expression and underexpression in treatment versus control,

and the top 1% and 5% overexpression and underexpres-

sion genes were assigned to molecular concepts.

Table 4. Molecular Concept Types Integrated for Enrichment Analysis.

Class Source Type Concepts

Annotation Gene Ontology Biologic process 855

Cellular component 249

Molecular function 818

InterPro Protein family 2072

Gene expression Oncomine Cancer signatures* 2382

Literature Perturbation signatures 485

Connectivity

Map

Drug signatures* 758

Regulatory TRANSFAC Promoter-binding site sets 361

picTar miRNA target sets 168

Broad Conserved promoter motif 174

Conserved UTR motif 72

Cytogenetic NCBI Chromosome arm 47

Chromosome subregion 294

Pathways/ Biocarta Signaling pathways 260

interactions KEGG Metabolic pathways 160

HPRD Ptn – Ptn interaction sets 4144

PINdb Nuclear protein complex 65

Five classes of molecular concepts were compiled from 13 sources.

Oncomine and literature concepts were derived by integrating data from

many independent sources.

PINdb = Proteins Interacting in the Nucleus database.

*The number of concepts reported includes one overexpression signature

and one underexpression signature from each Oncomine and Connectivity

Map profile. Concepts were generated from three overexpression and three

underexpression Oncomine signatures (top 1%, 5%, and 10%) and two

overexpression and underexpression Connectivity Map signatures (top 1%

and 5%).
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Chromosome arm and cytoband mappings were down-

loaded from the NCBI Map Viewer (http://www.ncbi.nlm.nih.

gov/mapview/). Biologic process, molecular function, and

cellular component annotations from the Gene Ontology

Consortium (http://www.geneontology.org/) [16] were down-

loaded from Entrez Gene (http://www.ncbi.nlm.nih.gov/

entrez/query.fcgi?db=gene). KEGG metabolic pathways

were downloaded from KEGG (http://www.genome.jp/

kegg/) [18]. Biocarta signaling pathways were downloaded

from the Biocarta web site (http://www.biocarta.com/). Pro-

tein domains and family assignments were downloaded

from InterPro (http://www.ebi.ac.uk/interpro/) [17]. Protein–

protein interaction sets were downloaded from the Human

Protein Reference Database (HPRD; http://www.hprd.org/)

[24]. Literature-defined concepts were collected from 207

peer-reviewed publications that applied Affymetrix arrays to

study the transcriptional effects of an experimental perturba-

tion such as drug treatment or candidate gene activation.

TRANSFAC (http://www.gene-regulation.com) transcrip-

tion factor motifs were defined by scanning all human gene

promoter sequences for the presence of 361 experimentally

defined transcription factor–binding sites [19]. One-kilobase

promoter sequences from 20,647 RefSeqs were downloaded

from the UCSC genome browser (http://hgdownload.cse.

ucsc.edu/goldenPath/hg17/bigZips/) in August 2004. Se-

quences were sequentially submitted to MATCH a compo-

nent of the TRANSFAC Professional Suite, which scans a

sequence for the presence of transcription factor–binding

sites as determined by a database of position–weight matri-

ces. A hit list was filtered to contain only the top 2000 hits per

matrix, as sorted by the matrix similarity score. Conserved

promoter motifs and conserved 3V UTR motifs were defined

by a comparative genomics analysis that identified conserved

motifs across four mammalian organisms [29]. Predicted

microRNA target genes were downloaded from picTar

(http://pictar.bio.nyu.edu/), a resource that applies a com-

parative genomics algorithm to identify putative miRNA

target gene sets [30].

To carry out molecular concepts analysis, each pair of

molecular concepts was tested for association using Fisher’s

exact test. Results were stored if a given test had odds ratio

(OR) > 1.25 and P < .01. P < 1e � 100 was set to 1e � 100.

Interactome

Approximately 16,000 known protein–protein interac-

tions were downloaded from the Human Protein Reference

Figure 6. Analyzing cancer signatures in the context of related gene sets can identify coordinately regulated functional modules. To test for the enrichment of

related gene sets in cancer signatures, the overlap is assessed as a 2 � 2 contingency table, and then a Fisher’s exact test is performed. Related gene set analysis

is automatically performed for a wide variety of gene sets across hundreds of cancer signatures from the Oncomine database.
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Database (http://www.hprd.org). The HPRD interaction set

represents a manually curated database of proteins pairs that

have experimental evidence for physical interaction. Each

protein–protein interaction is linked to literature evidence.

Oncomine reports pairs of differentially expressed genes

that encode proteins with documented protein–protein inter-

actions. Gene pairs are rank-ordered by the product of their

P values. Oncomine generates interactome maps for the top

10% of genes rank-ordered by their P values in each differ-

ential expression analysis.

Molecular Concepts Analysis

The previous sections detailed analyses at the level of indi-

vidual genes. Recent reports have demonstrated that focusing

instead on sets of related genes (e.g., pathways, processes,

protein complexes, and so on) can uncover relationships

not apparent at the single-gene level [23]. For example, one

might observe that TOP2A is overexpressed in aggressive

breast cancer and might conclude that this gene plays an

important role in tumorigenesis. An analysis of related gene

sets, or ‘‘molecular concepts,’’ might show that, in fact, the

cell cycle gene set, of which TOP2A is a part, is disproportion-

ately overexpressed in aggressive breast cancer, allowing

for the more accurate and more general conclusion that the

cell cycle is hyperactivated in aggressive breast cancer. In

another case, one might find that a disproportionate fraction

of differentially expressed genes share Myc-binding sites in

their promoters, suggesting that pathways activating the Myc

transcription factor might be responsible for observed gene

deregulation and cancer pathogenesis.

To identify such functional and regulatory relationships,

the Oncomine analysis pipeline includes a comprehensive

‘‘molecular concepts’’ analysis, which spans diverse types

of gene sets, including those derived from Gene Ontology

[16], InterPro [17], Biocarta, KEGG [18], HPRD [24], and

TRANSFAC [19], as well from Oncomine itself and our

newly developed resource, the Molecular Concept Map

(D.R.R., unpublished data) (Table 4). For each gene expres-

sion signature in Oncomine, this analysis provides a broad

Figure 7. Molecular concepts analysis of cancer signatures. Oncomine analyzes 13 types of molecular concepts (Table 4) and searches for significant enrichment

in cancer and normal tissue signatures. Signatures were computed for each cancer type in the Su et al. multicancer data set [25], and representative enriched

molecular concepts are presented. Each row in the heatmap represents a gene in the labeled molecular concept. Red indicates relative overexpression, and blue

indicates relative underexpression. Fatty acid metabolism genes were enriched in the prostate cancer signature; protein metabolism genes were enriched in the

colorectal cancer signature; immunoglobulin-like genes were enriched in the renal cell carcinoma signature; and proteolysis gene were enriched in the pancreatic

cancer signature.
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understanding of activated and repressed processes, path-

ways, and regulatory programs, while also drawing similarity

to Oncomine-derived signatures and experimentally defined

signatures from the literature.

Molecular concepts analysis automatically compares

each gene set to each Oncomine cancer signature, assess-

ing overlap significance with Fisher’s exact test (Figure 6).

The Oncomine enrichment module then sorts gene sets of

each type based on their degree of enrichment in a selected

expression signature. To illustrate the utility of this analysis

module, we inspected the results generated for cancer sig-

natures from the Su et al. multicancer data set [25]. This

data set included 11 types of cancer, and Oncomine differ-

ential expression analysis generated signatures of genes

deregulated in each cancer type relative to all others. Mo-

lecular concepts analysis on these differential expression

profiles identified molecular concepts that are coordinately

overexpressed in the respective cancer types. For ex-

ample, as depicted in Figure 7, prostate cancers showed

overexpression of fatty acid metabolism genes, whereas

colorectal cancers showed relative overexpression of protein

metabolism genes. Renal cell carcinomas showed over-

expression of immunoglobulin-like genes, perhaps due to

white blood cell infiltrates, and pancreatic cancers showed

coordinate overexpression of proteolysis genes. These re-

sults can be reviewed in detail by visiting the Enrichment

Analysis in Oncomine. The same type of analysis has been

performed for each of the > 1000 Oncomine cancer signa-

tures. We recently applied this analysis module to examine

molecular concepts that are deregulated in prostate cancer

Figure 8. Protein interaction networks overexpressed in multiple myeloma. (A) Heatmaps depicting the overexpression of the RAF1 and IARS networks in multiple

myeloma relative to normal B cells. Seven of 42 interactions partners of RAF1 are in the top 5% of the myeloma profile (OR = 4.35, P = .004), and 9 of 10 interaction

partners of IARS are in the top 20% of the myeloma profile (OR = 21.58, P = 2.6e � 6). (B) The extended RAF1 network overexpressed in multiple myeloma

displaying the multifaceted activation of RAF1. (C) The IARS network overexpressed in multiple myeloma.
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progression based on laser capture microdissection micro-

array profiles, identifying key process and regulatory mech-

anisms at work in cancer progression [26].

Interaction Network Analysis

The Interactome analysis module uses known and pre-

dicted components of the human protein interaction network

as a framework for interpreting complex cancer signatures.

Known protein–protein interactions are queried from the

HPRD [24]. Instead of considering cancer signatures as lists

of deregulated genes, the Interactome module allows one to

consider a multidimensional network of gene deregulation.

This type of analysis, coupled with gene set analysis, facili-

tates the identification of cancer network ‘‘hubs,’’ referring to

overexpressed proteins that interact with a large number

of other overexpressed proteins. For example, when con-

sidering a multiple myeloma signature, we found that both

IARS and RAF1 are overexpressed and interact with a dis-

proportionate number of other overexpressed genes. Seven

of 42 interactions partners of RAF1 are in the top 5% of the

myeloma profile (OR = 4.35, P = .004), and 9 of 10 interaction

partners of IARS are in the top 20% of the myeloma profile

(OR = 21.58, P = 2.6e � 6). This enrichment suggests that

these networks are hyperactivated and may thus serve as

appropriate points of intervention (Figure 8). Again, this type

of analysis is available for all Oncomine cancer signatures.

Comparison with Other Resources

Oncomine is unique in that it unifies a large compendium

of published cancer microarray data with a suite of advanced

analytic tools facilitating biologist-friendly data mining. The

ArrayExpress [2] and the Gene Expression Omnibus [3]

repositories have proven highly valuable in standardizing

and distributing cancer microarray data; however, these re-

sources are not focused on data analysis or in-depth data

mining. The Stanford Microarray Database [9] also con-

tains a large number of data sets, but again, the data are

not easily navigated, especially on a per-gene basis. As de-

scribed above, all cancer microarray data that are de-

posited in Gene Expression Omnibus (GEO) and Stanford

Microarray Database (SMD) are automatically ported to

Oncomine and then standardized by our data collection

team. Diehn et al. [27] provide a graphical representation of

microarray data, but only for a limited number of data sets.

In summary, Oncomine is a unique resource offering un-

paralleled access to published cancer transcriptome data.

Availability

Oncomine is freely available to the academic research

community at http://www.oncomine.org and to commer-

cial entities from Compendia Bioscience, Inc. (http://www.

compendiabio.com) at http://www.oncomine.com.
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